Towards sustainable land management for enhancing food security while mitigating climate change impacts:

The Role of Nuclear and Isotopic Techniques

Long Nguyen Joint FAO/IAEA Programme of • Nuclear Techniques in Food and Agriculture

Joint FAU/IAEA Programme Nuclear Techniques in Food and Agriculture

Atoms for Food and Agriculture: Meeting the Challenge

Corporate Mission

Applications in Food and Agriculture Joint FAO/IAEA Programme

Nuclear Techniques in Food and Agriculture

Food & Environmental Safety

by Food Irradiation and Radioanalytical Techniques

Animal Production & Health

by Serological and Molecular **Techniques**

Nuclear Techniques

Plant Breeding & Genetics

by Mutation Techniques

Insect Pest Control

by Sterile Insect and Related **Biological Techniques**

Soil & Water Management & Crop Nutrition

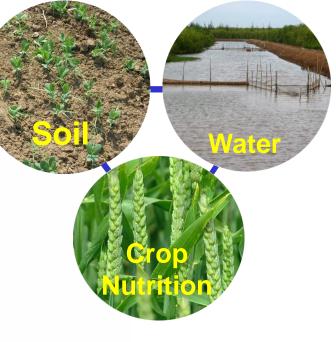
by Isotopic and Nuclear **Techniques**

Joint FAO/IAEA Programme

Our Goals:

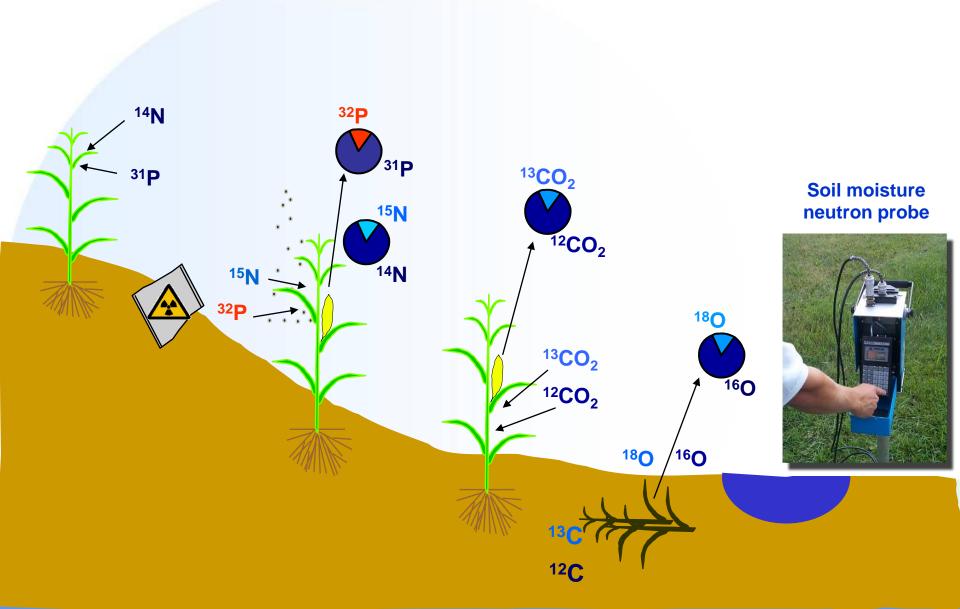
- Food Security
 - Sustainable Agriculture

Resource
conservation

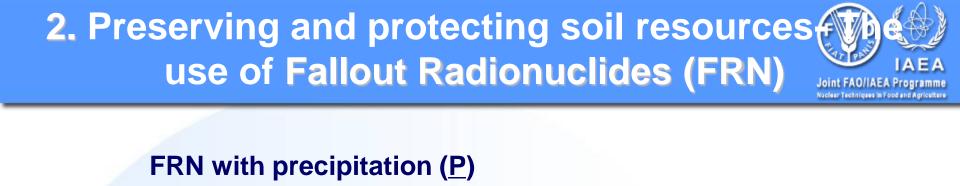

Joint FAO/IAEA Programme

- An increase in global population from 7 billion to 9 billion by 2050
- 70% increase in food production and 50% increase in water demand for agriculture needed by 2050.
- 1.9 billion ha of land degraded with an annual rate of 5-7 million ha.
- Agriculture emits 14-30% of global greenhouse gas (GHG) emissions:

An overview on approaches and relevant nuclear and isotopic techniques used by the SMNCN



1. Managing soils for enhancing crop production and ecosystem services


IAEA

Joint FAO/IAEA Programme Naclear Techniques in Food and Agriculture

1. Managing soils for enhancing crop produce

- **1. Integrated soil-water-nutrient management in:**
 - Agroforestry,
 - Dryland and irrigated agriculture.
 - Cropping systems in tropical high P fixing soils.
- 2. Evaluation of crop genotypes with increased WUE using carbon isotope discrimination technique.
- 3. Identification of food crop genotypes tolerant to soils of low N and P status.

Resulting soil level

Deposition site Original soil level

2. Soil erosion and salinization (continued)

1. Erosion:

Extent of soil erosion: 7Be, 137Cs and 210Pb for short-term (<30 days), medium-term (~40 years) and long-term (~100 years).

Sources: Compound specific stable isotope (CSSI).

2. Salinization

3. Managing soils for climate change

Increasing soil quality and productivity

- > Soil fertility
- Conservation agriculture
- > Mulching
- > Bio-fertilisers

Joint FAO/IAEA Programme Nuclear Techniques in Food and Agriculture

4. Managing soil water storage for climate change

- Improving water use efficiency in rainfed and irrigated agriculture
 - > Agroforestry
 - > Mulching
 - Irrigation scheduling
 - On-farm water storage

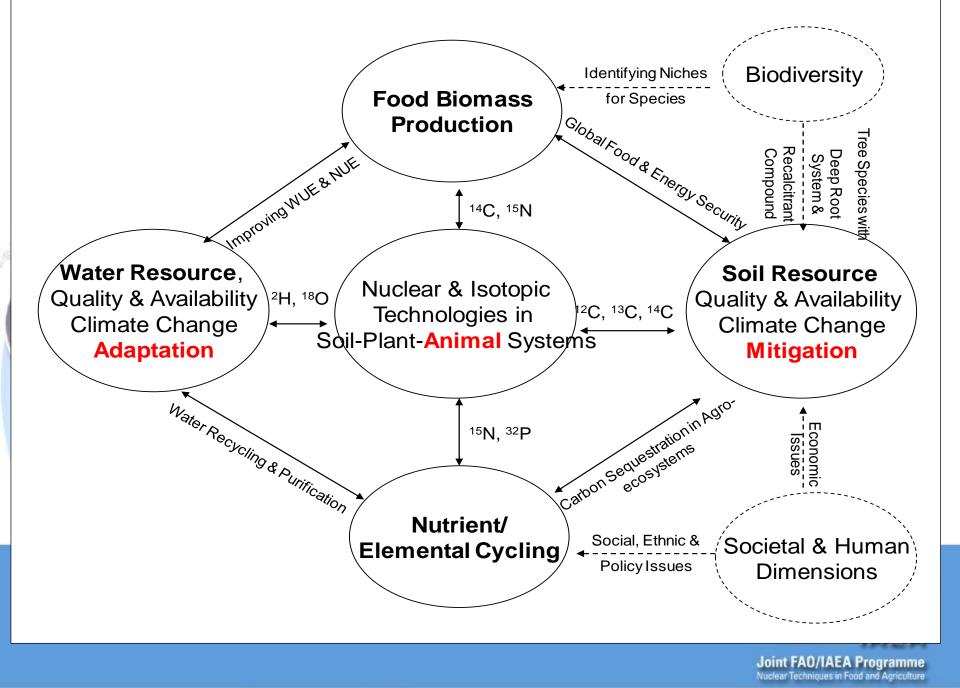
The Way Forward

- Increasing soil carbon storage (C sequestration in soil and crops)
 - > Soil fertility
 - Conservation agriculture
 - > Mulching/cover crops
 - Bio-fertilisers
- Reducing GHG
 - N fertilisers
 - Animal manure
 - Irrigation scheduling

A more holistic system approach:

- Integrated cropping-livestock.
- Non-point source pollution control
- Water recycling through constructed wetlands and riparian zones.
- Alternative land uses
- Increasing soil and <u>agricultural</u> resilience against drought and flooding events: Climate smart agriculture

CONCLUSIONS



- Nuclear and isotopic techniques (NIT) offer comparative advantages of high specificity, accuracy and sensitivity.
- Multi-disciplinary approaches.
- Capacity building, networking, coordination and information exchange are important in NIT applications.
- Partnerships and innovative collaboration modalities important.

CONCLUSIONS

- Nuclear and isotopic techniques (NIT) offer comparative advantages of high specificity, accuracy and sensitivity.
- Multi-disciplinary approaches.
- Capacity building, networking, coordination and information exchange are important in NIT applications.
- Partnerships and innovative collaboration modalities important.

Atoms for Food and Agriculture: Meeting the Challenge